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Abstract

Low Mach number turbulent flows over an open cavity were studied to investigate the quantitative characteristics of

large-scale vortical structures responsible for self-sustained oscillations. Wind tunnel experiments with particle image

velocimetry (PIV) were conducted in the range of the ratio of cavity length (L) to depth (D), 1oL/Do4, when the

incoming boundary layer is turbulent at Rey ¼ 830 and 1810. Self-sustained oscillation modes were classified by varying

the conditions of L/D and Rey. The oscillation modes were consistent with the number of vortical structures existing

between the leading and trailing edges of the cavity. Proper orthogonal decomposition (POD) was employed to the

spatial distributions of vertical velocity correlations on the lip line of cavity geometry. By examining the conditionally

averaged distributions of the correlation coefficients of POD, the spatial characteristics of large-scale vortical structures

for self-sustained oscillations were examined.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Flows over an open cavity have received much attention due to the occurrence of self-sustained oscillations of

velocity and pressure, which may induce acoustic noise or strong vibrations in engineering applications such as air

and ground transportation. Thus, many numerical and experimental studies have been made over several decades

to understand the mechanism underlying self-sustained oscillations and prevent undesired problems. The nature of

oscillating behavior with a separated shear layer over an open cavity is known to be influenced by several flow

parameters, which are the ratio of cavity length (L) to depth (D), Mach number (Ma), Reynolds number (Re) and the

state of the incoming boundary layer.

In cavity flows with high Mach numbers, self-sustained oscillations over an open cavity originate from shear layer

instabilities and acoustic feedback (Rossiter, 1964; Ahuja and Mendoza, 1995). In laminar flows with low Mach

numbers, the mechanism of self-sustained oscillations was characterized by identifying the oscillation modes which are

denoted by shear layer and wake modes (Gharib and Roshko, 1987). These oscillation modes were generated by

hydrodynamic instabilities within the shear layers of laminar cavity flows (Rockwell and Naudascher, 1979; Rockwell

and Kinsley, 1980; Howe, 1997; Yao et al., 2004). However, in turbulent cavity flows with low Mach number, it is not
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

am time-varying coefficient of mth mode

f frequency of self-sustained oscillations (Hz)

q stochastic data

D cavity depth (mm)

K kernel function

L cavity length (mm)

M total number of eigenmodes or snapshots

N number of self-sustained oscillation modes

ReD Reynolds number, UND/n
Rey Reynolds number, UNy/n
Rvv v–v two-point correlation coefficient

StL Strouhal number based on the length of the

cavity

Uc convection velocity (m/s)

UN free-stream velocity (m/s)

vrms root mean square of vertical velocity (m/s)

x0 streamwise position of reference point (mm)

y0 vertical position of reference point (mm)

am mth threshold of time-varying coefficient

d boundary layer thickness (mm)

do vorticity thickness (mm)

y momentum thickness of incoming boundary

layer (mm)

lci swirling strength

lox streamwise wavelength of vortical structure

(mm)

sm mth eigenmode

cm mth eigenvector

O physical domain of stochastic data
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clear to elucidate the occurrence of self-sustained oscillations due to the inherent fluctuations originated from

turbulence (Grace et al., 2004; Chang et al., 2006).

Recently several attempts have been made to identify self-sustained oscillations of turbulent cavity flows by

examining large-scale structures within the separated shear layer of the cavity (Oshkai et al., 2005; Geveci et al., 2003).

Lin and Rockwell (2001) observed large-scale structures related to self-sustained oscillations with periodic pressure

fluctuations in turbulent cavity flow. Ashcroft and Zhang (2005) also observed large-scale vortical structures, by

examination of the instantaneous velocity fields and the statistical analysis of vertical velocity correlation, as evidence

of self-sustained oscillations. Lee et al. (2008) showed that the spectral characteristics of large-scale structures are

identical with the energy spectra of pressure fluctuations corresponding to the self-sustained oscillations by large eddy

simulations. They identified large-scale structures responsible for self-sustained oscillations by employing proper

orthogonal decompositions (POD) to the distributions of pressure fluctuations. More recently, Kang et al. (2008)

demonstrated that self-sustained oscillation modes are determined by analyzing the distributions of vertical velocity,

which reflect the organized nature of large-scale vortical structures.

Although previous studies found that the formation of large-scale vortical structures is essential for self-sustained

oscillations, the main focus was limited mainly to ascertain the existence of self-sustained oscillations for few cases

of cavity geometries. To understand the mechanism of self-sustained oscillations in turbulent cavity flows, it is

indispensable to test in a wide range of parameters such as the length of the cavity (L/y), Reynolds number (Rey) and

ratio of length to depth (L/D), which could affect the occurrence of self-sustained oscillations. Moreover, quantitative

analysis is needed to identify the spatial characteristics of large-scale vortical structures with regard to self-sustained

oscillations.

The objective of the present study is to investigate the quantitative characteristics of large-scale vortical structures

responsible for self-sustained oscillations with various turbulent cavity flows. To achieve this, we carried out particle

image velocimetry (PIV) measurements in a range of 1oL/Do4 when the incoming boundary layer is turbulent at

Rey ¼ 830 and 1810. Statistical analysis over the instantaneous PIV data was used to identify the oscillation modes with

regard to large-scale structures. In addition, to elucidate the spatial characteristics of large-scale vortical structures,

proper orthogonal decomposition (POD) was utilized to the velocity fluctuations within the separated shear layer,

which was based on the spatial correlation of vertical velocity on the lip line of the cavity. Furthermore, conditional

averaging with the correlation coefficients of POD was employed to represent the large-scale structures of the flows over

an open cavity.
2. Experimental apparatus and procedure

Experiments were performed in a subsonic open-circuit wind tunnel. Details regarding the experimental apparatus

are described in Kang et al. (2008). However, test sections were modified and extended for the present experiments. The

cavity dimensions were 10–100mm (length)� 10 or 25mm (depth)� 630mm (width). The length of the cavity was
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designed to be adjustable while the depth of the cavity was fixed to 10 and 25mm, in order to investigate the effect

of length (L) to depth (D) ratios such as L/D ¼ 1, 2 and 4 (see Fig. 1). In the present experiments, the inlet velocities

were 6.85 and 14m/s. The Reynolds numbers Rey defined based on the momentum thickness at these velocities were 830

and 1810, respectively. The boundary layer thickness (d) and momentum thickness (y) of the inlet boundary layer at

x/D ¼ �4 were 21, 19 and 1.77, 1.73mm, respectively. Details of the flow parameters in the present study are given in

Table 1.

Particle image velocimetry (PIV) techniques were employed to measure instantaneous velocity field of the cavity, as

shown in Fig. 1. A laser light sheet was produced by a double-pulsed Nd:YAG laser (New Wave Research) that

delivered 200mJ of energy per pulse at 532 nm. The laser sheet illumination was collimated by a cylindrical lens before

entering the test-section. Tracer particles in the flow fields were seeded by laskin nozzle submerged in an olive oil

chamber. Particle images were captured by an 85mm lens (Nikon, Micro) and a 12-bit CCD camera (Sensicam faster

shutter, PCO Inc.) with 1280� 1024 pixels. A field of view was changed from 30mm� 24mm to 112mm� 90mm

in accordance with different geometries of the cavity. For each geometry and inlet velocity, 5000 instantaneous

PIV images were acquired. An iterative algorithm with window offset and multiplication of two adjacent correlation

planes were used to cross-correlate pairs of consecutive image maps (Hart, 2000). The final interrogation window size
Fig. 1. Schematic diagram of cavity configuration.

Table 1

Experimental conditions.

L/D D/y Rey Ma

1 5.7 830 0.02

1 14 830 0.02

1 5.8 1810 0.04

1 15 1810 0.04

2 5.7 830 0.02

2 14 830 0.02

2 5.8 1810 0.04

2 15 1810 0.04

4 5.7 830 0.02

4 14 830 0.02

4 5.8 1810 0.04

4 15 1810 0.04
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was 16� 16 pixels with a 50% overlap. Particle displacements and turbulent quantities were computed using in-house

PIV software. Velocity measurements for inflow parameter, e.g. velocity, boundary layer thickness and momentum

thickness were obtained using a constant-temperature anemometer (IFA 300) and a single wire (TSI 1260). To resolve

streamwise velocities, a total of 409,600 time-series data were acquired with a 7.5 kHz sampling rate and analyzed using

LabVIEW software and an A/D board (NI 6052E, National Instrument Inc., USA).
3. Results and discussion

3.1. Time-mean and instantaneous velocity fields

PIV measurements were carried out at a total of 12 cases which include two different inlet velocities, two different

depths and three ratios of length to depth, as listed in Table 1. For all configurations studied, the time-mean flow fields

were characterized by the open cavity type, which exhibits the impingement of the separated shear layer and large

recirculation flow. Fig. 2 shows time-averaged streamlines and contours of streamwise velocity for L/D ¼ 1, 2 and 4

with Rey ¼ 1810 and D/y ¼ 5.8. In all three figures, a clockwise rotating vortex is observed within the cavity.

A counterclockwise rotating vortex in the upstream region inside the cavity is induced by the clockwise rotating vortex

for L/D ¼ 2 and 4, whereas a clockwise rotating vortex fills the whole cavity for L/D ¼ 1.

To investigate the characteristics of the separated shear layer in the open cavity, the growth rate of the separated

shear layer between the leading and trailing edges was quantified using vorticity thickness (do). As a measure of the

shear layer thickness, the vorticity thickness was employed to time-averaged flow fields, which is defined as

do ¼
U2 �U1

@U=@y
��
max

, (1)

where U2 and U1 are the speeds of the upper and lower streams, respectively (Brown and Roshko, 1974). In the present

study, U2 is the free-stream velocity (UN) and U1 ¼ 0. Fig. 3 shows the variation of the vorticity thickness along the lip

line of the cavity geometry, where the lip line is a straight line from the leading edge to the trailing edge. The vorticity

thickness (do) is normalized by the cavity depth. The rate of growth (ddx/dx) for each system of L/D ¼ 1, 2 and 4 shows

the same trend, which is a linear growth until the separated shear layer encounters the trailing edge and thereafter a

sharp decay in Fig. 3(a). Even though the incoming flow and the depth of the cavity are different, the spreading rates are

similar as shown in Fig. 3(b).
Fig. 2. Mean velocity and streamline for Rey ¼ 1810, D/y ¼ 5.8: (a) L/D ¼ 1; (b) L/D ¼ 2 and (c) L/D ¼ 4.



ARTICLE IN PRESS

Fig. 3. Vorticity thickness along the shear layer for L/D ¼ 1, 2 and 4: (a) Rey ¼ 830 and D/y ¼ 14 and (b) Rey ¼ 1810 and D/y ¼ 5.8.

Fig. 4. Instantaneous velocity field by Galilean decomposition for Rey ¼ 830 and D/y ¼ 5.7: (a) L/D ¼ 1, (b) L/D ¼ 2 and (c) L/

D ¼ 4.
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Next, we consider the large-scale vortical structures regarding the growth of the separated shear layer over the open

cavity. Fig. 4 shows a vector field of instantaneous velocity and contours of vorticity for L/D ¼ 1, 2 and 4. To more

clearly observe the large-scale vertical structure, Galilean decomposition is applied with a convective velocity of

0.55UN, as used in previous studies (Sarohia, 1977; Ahuja and Mendoza, 1995; Larchevêque et al., 2003; Kang et al.,

2008). When the convective velocity is subtracted from the instantaneous velocity, several vortical structures are

observed between the leading and trailing edges in the three figures. In all configurations, the length scale of vortical

structure within the separated shear layer grows with it moves downstream. Note that the large-scale vortical structures

in Fig. 4 are similar to the vortical characteristics of self-sustained oscillations obtained in previous studies (Gharib and

Roshko, 1987; Lin and Rockwell, 2001; Kang et al., 2008).
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3.2. Self-sustained oscillation modes in the cavity flow

To further elucidate the characteristics of large-scale vortical structures, we examine two-point spatial correlation

coefficients of vertical velocity fluctuations (Fig. 5). This is defined as

Rvvðx=D; y=D; x0; y0Þ ¼
hvðx=D; y=DÞvðx=Dþ x0; y=Dþ y0Þi

vrmsðx=D; y=DÞvrmsðx=Dþ x0; y=Dþ y0Þ
, (2)

where (x0, y0) represents a reference point. Here, /S denotes an ensemble average of 5000 PIV images. These reference

points are located at (x/D, y/D) ¼ (1, 1), (2, 1) and (3, 1) as shown in Fig. 5. Alternating patterns of positive and

negative coefficients are observed for all cases. As reported by Little et al. (2007) and Kang et al. (2008), the alternating

pattern represents the formation of large-scale vortical structures within the separated shear layer. On moving

downstream, the length scale of the alternating pattern increases. This is consistent with the growth of vortical structure

within the shear layer as shown in Fig. 4.

To quantify the growth of large-scale vortical structures, the streamwise wavelength of the vortical structure is

defined as the distance between consecutive negative peaks of the v–v correlation coefficient along the lip line of the

cavity geometry (Kang et al., 2008), as shown in the inset of Fig. 6(b). As the reference point moves downstream,

the wavelength gradually increases from 0.5D near the leading edge to 2D near the trailing edge, as shown in Fig. 6(a).

The streamwise averaged wavelength is calculated as lx, avg/D ¼ 1.37 within the cavity length, as indicated by dashed

lines. Gharib and Roshko (1987) determined the Nth oscillating mode of incompressible flows over an open cavity by

using Rossiter’s empirical equation

L

lx

¼
fL

Uc;avg
¼ N, (3)
Fig. 5. Two-point spatial correlation for Rey ¼ 830, D/y ¼ 14 and L/D ¼ 4: (a) x/D ¼ 1 and y/D ¼ 1, (b) x/D ¼ 2 and y/D ¼ 1 and (c)

x/D ¼ 3 and y/D ¼ 1.
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where f is the oscillating frequency and Uc,avg is the averaged convection velocity. The closest integer of N in the Nth

mode of oscillation is the number of vortical structures existing between the leading and trailing edges. When the

incoming flow over a cavity is turbulent with very low Mach number, Eq. (3) is also available because the acoustic
Fig. 6. Wavelengths of two-point correlation along the lip line of cavity geometry for Rey ¼ 830, D/y ¼ 14 and L/D ¼ 4: (a) the

distribution of lx/D and (b) the distribution of L/lx.

Fig. 7. Wavelengths of two-point correlation along the lip line of cavity geometry: (a) the distribution of L/lx for Rey ¼ 1810, D/

y ¼ 15 and L/D ¼ 1 and (b) the distribution of L/lx for Rey ¼ 830, D/y ¼ 5.7 and L/D ¼ 2.
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wavelength (l) is much longer than the cavity length. Therefore, Kang et al. (2008) identified the Nth mode of self-

sustained oscillations based on the the streamwise averaged wavelength lx,avg and cavity length L. Fig. 6(b) represents

distributions of the cavity length over streamwise averaged wavelengths L/lx on the lip line of the cavity, which can be

expressed as Eq. (3). The decrease of L/lx along the lip line of the cavity is similar to the trend observed previously in

dominant oscillation frequency distribution of the flow over a backward-facing step. This means that the small vortices

are generated near the leading edge of the cavity and grow into a large-scale vortical structure as it convects

downstream until the trailing edge. The streamwise averaged wavelength L/lx,avg is calculated as 2.9 within the cavity

length, as indicated by dashed line in Fig. 6(b). By Eq. (3), this value is very close the integer 3, which can be regarded as

the number oscillation modes and vortical structures within the open cavity. This result is consistent with the numbers

of vortical structures observed in the instantaneous velocity fields.

Fig. 7 shows the distributions of L/lx on the lip line of the cavity with different geometries such as L/D ¼ 1 and 2.

They represent the decrease of L/lx along the separated shear layer of the cavity. The averaged wavelengths L/lx,avg are

calculated as 2.9 for L/D ¼ 1 and 1.9 for L/D ¼ 2. These values, which can be regarded as the closest integer 3 and 2,

are also consistent with the number of large-scale vortical structures observed in the instantaneous velocity fields.

Different numbers of large-scale vortical structures are obtained in the various cavity flows of the present configuration.

This means that there are many oscillation modes depending on the inflow parameters and cavity geometries.

By examining the afore-stated streamwise averaged wavelength, the oscillation modes of each system can be

classified. Fig. 8 represents the oscillation modes, which occur at different cavity lengths (L/y) and inflow velocities

(Rey). Mode 1, mode 2 and mode 3 are denoted by a circle, a triangle and a square, respectively, while non-oscillation is

represented by cross. When Rey ¼ 1810, the first oscillation mode appears in the shortest cavity, i.e., L/y ¼ 5.8 and

L/D ¼ 1. When L/y ¼ 11.6 and L/D ¼ 2, the second oscillation mode occurs. As the length of the cavity increases

beyond L/y ¼ 15, flows begin to oscillate in the third mode, which remains unchanged although the cavity length

increases further in the present study. Meanwhile, in the low Reynolds number, i.e., Rey ¼ 830, the third oscillation

mode starts to appear in the cavity with a longer length than that at Rey ¼ 1810. The second mode also appears at a

longer cavity length. The higher oscillation modes may occur as Rey and L/y increase further. In addition, note that no

self-sustained oscillations occur at L/y ¼ 5.7 and Rey ¼ 830. To clarify the non-oscillation case, two-point spatial

correlation is obtained as discussed in Fig. 5. Fig. 9(a) represents two-point spatial correlation coefficients of vertical

velocity fluctuations when the reference point is set at (x/D, y/D) ¼ (0.5, 1). Different from the results of other cases, the

alternating patterns of positive and negative coefficients are not observed between the leading and trailing edges of the

cavity. This means that there are no formations of large-scale vortical structures in the cavity. These features can

be ascertained in the distribution of v–v correlation coefficients along the lip line of the cavity. As shown in Fig. 9(b), the

v–v correlation coefficients have positive values between the leading and trailing edges of the cavity.

3.3. Proper orthogonal decomposition analysis

The proper orthogonal decomposition (POD) introduced by Lumley (1967) is designed to find an orthogonal basis set

from an ensemble of stochastic data qð x!; tÞ which can be a significant quantity in the large structures of flow fields. A

set of basis functions is determined to maximize the value of mean-square projection on stochastic data, which becomes

the most similar to the original ensemble of data. Consequently, this amounts to solving an eigenvalue problem for

finding the largest eigenvalueZ
O

Kð x!; r!Þcmð r!Þd r!¼ lmcmð x
!
Þ, (4)

where cmð x
!
Þ and lm is a set of basis functions, i.e., eigenvector and eigenvalue. The kernel Kð x!; r!Þ is a two-point

spatial correlation tensor, which is defined as

x!; r!Þ ¼ hqð x!Þqð x!þ r!Þi. (5)

The stochastic data qð x!; tÞ can be reconstructed in the linear combination of orthogonal basis functions

qð x!; tÞ ¼
XM
m¼1

mmjmðtÞcmð x
!
Þ, (6)

where fm are time-varying coefficients. In the linear combination, each basis function is scaled by mm.

In the previous studies (Lumley, 1967; Liu et al., 2001; Kostas et al., 2002), the kernel function of POD is determined

to find the orthogonal eigenmodes of velocity fluctuations which were chosen for significant quantities of large-scale

structures in the flow. The kernel functions, i.e., correlation tensors of velocity fluctuations, correspond to total kinetic



ARTICLE IN PRESS

Fig. 9. Two-point spatial correlation for Rey ¼ 830, D/y ¼ 5.7 and L/D ¼ 1.

Fig. 8. Oscillation modes for Rey and L/y.
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energy. However, the total kinetic energy is not an effective criterion for disclosing the self-sustained oscillation modes

in turbulent cavity flows with low Mach number, due to the presence of inherent fluctuations originated from

turbulence and the weak coherence of large-scale vortical structures in the absence of acoustic resonance. Meanwhile,

the oscillating behaviors of the large-scale vortical structures are well extracted by the two-point spatial correlations of

vertical velocity fluctuations along the lip line of the cavity, as mentioned in Section 3.2. Hence, in the present study, the

vertical velocity fluctuations along the lip line are chosen for use in the application of POD analysis. The vertical

velocity fluctuations can be expressed as a linear combination of a set of basis functions as follows:

vðx; tÞ ¼
XM
m¼1

mmjmðtÞsmðxÞ, (7)

where sm(x) represents the mth eigenmode; 5000 instantaneous velocity fluctuations of the cavity flows are used for the

present POD analysis.

Fig. 10 shows the first four eigenmodes of the vertical velocity fluctuations along the lip line for Rey ¼ 830, D/y ¼ 14

and L/D ¼ 1. The periodic distributions are observed in the first and second modes in Fig. 10(a), which are related to

the oscillating behavior of the separated shear layer. Kang et al. (2008) suggested necessary conditions for identifying

the large-scale vortical structures in the cavity flow, which contain the change of vertical velocity from positive to

negative value on the lip line of the cavity. Through applying the same procedure of vortical structure identification

to the eigenmode of vertical velocity, in the first and second eigenmodes, two large-scale vortical structures are detected
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Fig. 10. Eigenmodes of POD for Rey ¼ 830, D/y ¼ 14 and L/D ¼ 1: (a) modes 1 and 2 and (b) modes 3 and 4.
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between the leading and trailing edges, respectively, as denoted by arrows. It is consistent with the self-sustained

oscillation modes corresponding to N ¼ 2, which are determined by the streamwise averaged wavelength as discussed

above. This means that the most energetic behaviors of the separated shear layer are the large-scale vortical structures

responsible for self-sustained oscillations. When regarding the shapes of the first and second eigenmodes as a sinusoidal

wave, the amplitude and period of the wave are observed to be increased going downstream. This result is relevant

to the large-scale vortical structures between the leading and downstream edges with the growth of shear layer as

observed previously. The first mode is very similar to the second mode with a phase shift as expected when the flow is

experiencing a global mean advection. The phase difference is estimated to be a quarter of one period. On the contrary,

irregular and high wavenumber motions of separated shear layer are observed in the third and fourth modes, as shown

in Fig. 10(b). In addition, it is difficult to find evidence of regular vortical structures. In the previous studies of laminar

flow, Podvin et al. (2006) showed that the oscillating behaviors of separated shear layer are observed in the first two

modes, whereas the next higher modes are related to the recirculation of the primary vortex inside cavity.

Fig. 11 shows the energy contribution of each mode, which is represented by the level of eigenvalue with a circle

symbol. The accumulation of eigenvalues at each mode is represented by a solid line, which is normalized by the total

sum. The contributions of the first two eigenmodes are almost 40% of the total energy. Close values of the first

two modes support that the two modes are originated from an identical motion of the large-scale vortical structures.

The relationship of the two modes is clearly shown in the phase diagram of Fig. 12, where the horizontal and vertical

axes represent the time-varying coefficients a1 and a2, respectively. The time-varying coefficient am(t) of the mth

eigenmode is calculated by

amðtÞ ¼ mmfmðtÞ ¼

Z
O

vðx; tÞsmðxÞdx. (8)

When the maximum value of time-varying coefficients am is found to be a1 or a2 in every instantaneous field,

distributions of the first and second mode coefficients are plotted in Fig. 12. It is interesting to find that the coefficients

a1 and a2 are more or less located around a circle. If the two signals oscillate with constant amplitude and the phase

difference is a quarter of one period, a complete circle is expected to be drawn. For the present distribution of the

coefficients a1 and a2, the scatter around a theoretical circle means that small fluctuations of oscillating amplitudes and

nearly constant phase difference are expected in the first two eigenmodes.

Next, to elucidate the spatial characteristics of the cavity flow corresponding to the dominant eigenmodes, i.e., the

first and second modes, we used the conditionally averaged distribution of the correlation coefficients which was used in

Lee et al. (2008) with direct numerical simulations of turbulent flows over an open cavity. In Eq. (8), the variable am(t)
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Fig. 12. Phase diagram of time-varying coefficients a1 and a2 for Rey ¼ 830, D/y ¼ 14 and L/D ¼ 1.

Fig. 11. Energy contribution of eigenvalues for Rey ¼ 830, D/y ¼ 14 and L/D ¼ 1.
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can be regarded as an instantaneous correlation coefficient between instantaneous vertical velocity fluctuations v(x, t)

along the lip line and the mth eigenmode sm(x). If the coefficient am(t) is very large in the instantaneous velocity fields,

the distribution of the instantaneous vertical velocity is very similar to the mth eigenmode. Thus, the conditional

averaging of the instantaneous velocity field based on the correlation coefficient is estimated as

hu
��amðtÞ � ami ¼ umðxÞ, (9)

where am is a threshold and we set am ¼ 2(am)rms. Fig. 13 shows conditionally averaged distributions of the velocity

fluctuations corresponding to the first two eigenmodes of vertical velocity fluctuations. The contour map is the

distribution of swirling strength lci, which is known to be an effective parameter for identifying vortical structures

(Zhou et al., 1999). In Fig. 13(a), two large-scale vortical structures are observed at x/D ¼ 0.5 and 0.95 with a clockwise

rotation of the velocity vector coinciding with the local peaks of the lci distribution. This is concurrent with the vortical

structure detected in the first eigenmode distribution of the vertical velocity fluctuations in Fig. 10(a). In Fig. 13(b), we

can observe two large-scale vortical structures with the peaks of lci at x/D ¼ 0.25 and 0.6, which may be the next phase

of an identical motion. The position of the vortical structure is consistent with that of the second eigenmode. This

consistency shows a successful estimation of velocity fields corresponding to the first two eigenmodes. The velocity fields

corresponding to the first two eigenmodes represent the most energetic behaviors of the separated shear layer which are

the large-scale vortical structures responsible for self-sustained oscillations. Through inspecting the conditionally
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Fig. 13. Conditionally averaged distributions of velocity fluctuations for Rey ¼ 830, D/y ¼ 14 and L/D ¼ 1: (a) the first eigenmode

and (b) the second eigenmode.

Fig. 14. Energy contribution of eigenvalues for Rey ¼ 1810, D/y ¼ 5.8 and L/D ¼ 4.
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averaged velocity fields of the first two eigenmodes, we can understand the spatial characteristics of turbulent flow over

an open cavity when the self-sustained oscillations take place. After the flow is separated near the leading edge, the

formation of vortical structures starts to appear with the wave motions of velocity vectors. As the flow moves

downstream, the length scale of the vortical structures gradually increases and the magnitude of velocity fluctuations

becomes larger within the separated shear layer. Finally, the vortical structures are going to be ejected near the trailing

edge.

Fig. 14 presents the energy contribution and local sum of eigenvalues for Rey ¼ 830, D/y ¼ 5.3 and L/D ¼ 4. The

first and second eigenvalues are almost the same and contain a large portion (about 30%) of the total energy. Fig. 15

shows distributions of the time-varying coefficients for the first and second eigenmodes. The close values of eigenvalues

and the circular shape of time-varying coefficients in the first two eigenmodes can be explained as identical structure

motions with a phase difference, which are the most energetic structure in the separated shear layers.

Fig. 16 shows distributions of the first and second eigenmodes and conditional averaging velocity fluctuation fields

corresponding to the two eigenmodes for Rey ¼ 1810, D/y ¼ 5.8 and L/D ¼ 4. In Fig. 16(a), as indicated by arrows,

three large-scale vortical structures are detected in the first and second eigenmode distributions, respectively. They are

also observed with clockwise rotations of the velocity vector coinciding with the local peaks of lci in velocity

fluctuations, which are determined by conditionally averaging under the criterion of correlation coefficient am,

corresponding to the first two eigenmodes in Fig. 16(b) and (c). Moreover, this result is concurrent with self-sustained

modes corresponding to N ¼ 3, which are calculated by the streamwise averaged wavelength, as shown in Fig. 8. This
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Fig. 15. Phase diagram of time-varying coefficients a1 and a2 for Rey ¼ 1810, D/y ¼ 5.8 and L/D ¼ 4.

Fig. 16. Eigenmodes and conditionally averaged distributions of velocity fluctuations for Rey ¼ 1810, D/y ¼ 5.8 and L/D ¼ 4.
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consistency supports that the spatial characteristics of self-sustained oscillations are represented by the Nth large-scale

vortical structures, which are the most dominant flow structures within the separated shear layer of the turbulent cavity

flows.
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Finally, we carry out a POD analysis for a system with Rey ¼ 830, D/y ¼ 5.7 and L/D ¼ 1, where no oscillation

modes occur from the two-point spatial correlation of vertical velocity fluctuations, as shown in Fig. 9. Fig. 17(a)

represents the energy contribution of eigenmodes and the accumulation of eigenvalues. Different from the results of

other cases like Figs. 11 and 14, only the first eigenmode is dominant with about 35% contribution of the total energy.

The contributions of other modes decrease for higher modes. Fig. 17(b) shows the distribution of the first and second

eigenmodes of the vertical velocity fluctuations along the lip line. It is difficult to find evidence of large-scale vortical

structure. In addition, the shapes of two eigenmodes are different from each other, which may have originated from

different flow motions. Fig. 18 represents the conditionally averaged distributions of velocity fluctuations
Fig. 17. Energy contribution of eigenvalues and eigenmodes for Rey ¼ 830, D/y ¼ 5.7 and L/D ¼ 1.

Fig. 18. Conditionally averaged distributions of velocity fluctuations for Rey ¼ 830, D/y ¼ 5.7 and L/D ¼ 1.
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corresponding to the first and second modes. In Fig. 18(a), the pattern of velocity fluctuations by conditional averaging

of the first eigenmode is similar to the mean flow distribution over an open cavity. Meanwhile, for the second

eigenmode, the counterclockwise rotation of velocity vectors is observed between the leading and trailing edges. The

core of rotation is not coincident with the local peak of lci, which means that it is not a vortical structure.
4. Conclusions

We performed PIV measurements and POD analysis in turbulent flows over an open cavity to see the quantitative

characteristics of the large-scale vortical structures responsible for self-sustained oscillations. Wind tunnel experiments

were conducted in the range of 1oL/Do4, when the incoming boundary layer is turbulent at Rey ¼ 830 and 1810. The

growth rates of the separated shear layer thickness for L/D ¼ 1, 2 and 4 showed a similar trend, i.e., a linear growth

until the separated shear layer encounters the trailing edge and then a sharp decay. By examining the steamwise

averaged wavelength of the vortical structures, the self-sustained oscillation modes were determined, which were

consistent with the number of vortical structures existing between the leading and trailing edges of the cavity. When

Rey ¼ 1810, the first oscillation mode appears for the system of L/y ¼ 5.8 and L/D ¼ 1. As the length of the cavity

increases, the second and third oscillation modes occur at L/y ¼ 11.6 and 15, respectively. For low Reynolds number

(Rey ¼ 830), the second and third oscillation modes start to appear in the cavity with a longer length than that of

Rey ¼ 1810, whereas no oscillations occur at L/y ¼ 5.7. To elucidate the spatial characteristics of the large-scale

vortical structures, POD analysis was applied to the spatial correlation of vertical velocity on the lip line of the cavity.

The first and second eigenmodes of vertical velocity contain relatively large contributions of total energy. The two

modes are originated from an identical structure motion of the separated shear layer with a phase shift. By applying the

vortical structure identification to the first and second eigenmodes of vertical velocity, large-scale vortical structures are

detected, which coincide with the self-sustained oscillation modes determined by the streamwise wavelength. By

examining conditional averaging under the criterion of a strong correlation between the first two eigenmodes and the

distribution of instantaneous vertical velocity, velocity fields corresponding to the self-sustained oscillations were

obtained. Conditionally averaged velocity fluctuation fields showed the formation and development of large-scale

vortical structures within the separated shear layer over an open cavity, which is responsible for self-sustained

oscillations.
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